Citation: | CHEN Zhi-bin, XIONG Ming. Yabloseque Unwinding of Boolean Paradoxes[J]. Journal of South China normal University (Social Science Edition), 2019, (4): 183-188. |
[1] |
熊明.算术、真与悖论.北京:科学出版社, 2017.
|
[2] |
S.YABLO. Paradox without Self-Reference. Analysis, 1993, 53(4):251—252. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229017549/
|
[3] |
赵艺, 熊明.不带不动点的雅布鲁式悖论存在吗?.华南师范大学学报:社会科学版, 2018(3):187—190. http://hnsfdxxb_skb.xml-journal.net/article/id/535
|
[4] |
R. T. COOK.Patterns of Paradox. Journal of Symbolic Logic, 2004, 69(3):767—774. doi: 10.2178/jsl/1096901765
|
[5] |
P.SCHLENKER. The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth. Journal of Philosophical Logic, 2007, 36(3): 251—307. doi: 10.1007/s10992-006-9035-x
|
[6] |
M.HSIUNG. Jump Liars and Jourdain's Card via the Relativized T-scheme. Studia Logica, 2009, 91(2):239—271. doi: 10.1007/s11225-009-9174-5
|
[7] |
M.HSIUNG. Tarski's Theorem and Liar-like Paradoxes. Logic Journal of the IGPL, 2014, 22(1):24—38. doi: 10.1093/jigpal/jzt020
|
[8] |
L. WEN.Semantic Paradoxes as Equations. Mathematical Intelligencer, 2001, 23(1):43—48. doi: 10.1007/BF03024517
|
[9] |
熊明.塔斯基定理与真理论悖论.北京:科学出版社, 2014.
|
[10] |
M.HSIUNG. Boolean Paradoxes and Revision Periods. Studia Logica, 2017, 105(5):881—914. doi: 10.1007/s11225-017-9715-2
|
[11] |
T.BOLANDER. Logical Theories for Agent Introspection. Technical University of Denmark.2003: 87—90. http://cn.bing.com/academic/profile?id=8f10c842e0adecd5e94c2dd0a4a354bf&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
熊明.悖论的自指性与循环性.逻辑学研究, 2014(6). http://d.old.wanfangdata.com.cn/Periodical/zsdxxblc201402001
|
[13] |
M.HSIUNG. Equiparadoxicality of Yablo's Paradox and the Liar. Journal of Logic, Language and information, 2013, 22(1):23—31. doi: 10.1007/s10849-012-9166-0
|