• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Zhi-bin, XIONG Ming. Yabloseque Unwinding of Boolean Paradoxes[J]. Journal of South China normal University (Social Science Edition), 2019, (4): 183-188.
Citation: CHEN Zhi-bin, XIONG Ming. Yabloseque Unwinding of Boolean Paradoxes[J]. Journal of South China normal University (Social Science Edition), 2019, (4): 183-188.

Yabloseque Unwinding of Boolean Paradoxes

More Information
  • Received Date: April 07, 2019
  • Available Online: March 21, 2021
  • According to the notions introduced by Cook et al., Yablo's paradox can be considered as an "unwinding" of the Liar. It has been proved that the unwinding preserves the degree of paradoxicality of the Liar, and thus the circularity of the Liar. Moreover, the above conclusion is also true for all n-card paradoxes and their unwindings. In this paper, the conclusion is extended to a larger class of paradoxes——Boolean paradoxes. Sentence net is applied to represent Boolean paradoxes and their unwindings. It is shown that any Boolean paradox has the same degree of paradoxicality as its Yabloseque unwinding. As a result, both of them depend on the same circularity.
  • [1]
    熊明.算术、真与悖论.北京:科学出版社, 2017.
    [2]
    S.YABLO. Paradox without Self-Reference. Analysis, 1993, 53(4):251—252. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229017549/
    [3]
    赵艺, 熊明.不带不动点的雅布鲁式悖论存在吗?.华南师范大学学报:社会科学版, 2018(3):187—190. http://hnsfdxxb_skb.xml-journal.net/article/id/535
    [4]
    R. T. COOK.Patterns of Paradox. Journal of Symbolic Logic, 2004, 69(3):767—774. doi: 10.2178/jsl/1096901765
    [5]
    P.SCHLENKER. The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth. Journal of Philosophical Logic, 2007, 36(3): 251—307. doi: 10.1007/s10992-006-9035-x
    [6]
    M.HSIUNG. Jump Liars and Jourdain's Card via the Relativized T-scheme. Studia Logica, 2009, 91(2):239—271. doi: 10.1007/s11225-009-9174-5
    [7]
    M.HSIUNG. Tarski's Theorem and Liar-like Paradoxes. Logic Journal of the IGPL, 2014, 22(1):24—38. doi: 10.1093/jigpal/jzt020
    [8]
    L. WEN.Semantic Paradoxes as Equations. Mathematical Intelligencer, 2001, 23(1):43—48. doi: 10.1007/BF03024517
    [9]
    熊明.塔斯基定理与真理论悖论.北京:科学出版社, 2014.
    [10]
    M.HSIUNG. Boolean Paradoxes and Revision Periods. Studia Logica, 2017, 105(5):881—914. doi: 10.1007/s11225-017-9715-2
    [11]
    T.BOLANDER. Logical Theories for Agent Introspection. Technical University of Denmark.2003: 87—90. http://cn.bing.com/academic/profile?id=8f10c842e0adecd5e94c2dd0a4a354bf&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    熊明.悖论的自指性与循环性.逻辑学研究, 2014(6). http://d.old.wanfangdata.com.cn/Periodical/zsdxxblc201402001
    [13]
    M.HSIUNG. Equiparadoxicality of Yablo's Paradox and the Liar. Journal of Logic, Language and information, 2013, 22(1):23—31. doi: 10.1007/s10849-012-9166-0
  • Cited by

    Periodical cited type(6)

    1. 杨一格,黄甫全,梁梓珊. AI主讲课程开发的教师减负效应:一项试验研究. 华东师范大学学报(教育科学版). 2024(02): 46-62 .
    2. 陈昕昕,王祖浩. 科学实践的国际经验:理论与实践. 中国教育科学(中英文). 2023(01): 84-95 .
    3. 倪欣语,燕红,江帆,马琼芳,张超凡,宋丽文. 自然教育活动类型及策划初探. 吉林林业科技. 2022(03): 42-45 .
    4. 杜小双. 教师学习与改变研究的复杂理论转向——基于三种教师学习模型的对比分析. 教育学术月刊. 2021(04): 82-89 .
    5. 姚红,王栋. 反思性实践视角谈大学法语教育改革. 牡丹江教育学院学报. 2021(10): 33-36 .
    6. 张成林. 小学对分课堂的哲学阐释. 教学与管理. 2020(23): 1-3 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return