• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHU Qi, CHEN Zhen, LI Bozhan, YANG Yang. The Impact of Artificial Intelligence on Labor Costs in the Context of Aging: Evidence from 31 Provinces and Regions in China[J]. Journal of South China normal University (Social Science Edition), 2022, (2): 142-158.
Citation: ZHU Qi, CHEN Zhen, LI Bozhan, YANG Yang. The Impact of Artificial Intelligence on Labor Costs in the Context of Aging: Evidence from 31 Provinces and Regions in China[J]. Journal of South China normal University (Social Science Edition), 2022, (2): 142-158.

The Impact of Artificial Intelligence on Labor Costs in the Context of Aging: Evidence from 31 Provinces and Regions in China

More Information
  • Received Date: December 21, 2021
  • Available Online: April 24, 2022
  • [1]
    陈彦斌, 林晨, 陈小亮. 人工智能、老龄化与经济增长[J]. 经济研究, 2019, 54(7): 47-63. doi: 10.3969/j.issn.1672-5719.2019.07.045
    [2]
    SHENG J, AMANKWAH-AMOAH J, WANG X J. A multidisciplinary perspective of big data in management research[J]. International journal of production economics, 2017, 191: 97-112. doi: 10.1016/j.ijpe.2017.06.006
    [3]
    TAN K H, JI G J, LIM C P, et al. Using big data to make better decisions in the digital economy[J]. Taylor & francis, 2017, 55(17): 4998-5000.
    [4]
    REN S J F, WAMBA S F, AKTER S, et al. Modelling quality dynamics, business value and firm performance in a big data analytics environment[J]. Taylor & francis, 2016, 55(17): 5011-5026.
    [5]
    IVANOV D, DOLGUI A, SOKOLOV B. The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics[J]. International journal of production research, 2019, 57(3): 829-846. doi: 10.1080/00207543.2018.1488086
    [6]
    FRANK A G, DALENOGARE L S, AYALA N F. Industry 4.0 technologies: implementation patterns in manufacturing companies[J]. International journal of production economics, 2019, 210: 15-26. doi: 10.1016/j.ijpe.2019.01.004
    [7]
    DOLGUI A, IVANOV D, POTRYASAEV S A, et al. Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain[J]. International journal of production research, 2020, 58(7): 2184-2199. doi: 10.1080/00207543.2019.1627439
    [8]
    WEERAKKODY V, KAPOOR K, BALTA M E, et al. Factors influencing user acceptance of public sector big open data[J]. Production planning & control, 2017, 28(11/12): 891-905.
    [9]
    KOZJEK D, VRABIC R, ERZEN G, et al. Identifying the business and social networks in the domain of production by merging the data from heterogeneous internet sources[J]. International journal of production economics, 2018, 200: 181-191. doi: 10.1016/j.ijpe.2018.03.026
    [10]
    CHEN H, CHIANG R H L, STOREY V C. Business intelligence and analytics: from big data to big impact[J]. MIS quarterly, 2012, 36(4): 1165-1188. doi: 10.2307/41703503
    [11]
    WALLER M A, FAWCETT S E. Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management[J]. Journal of business logistics, 2013, 34(2): 77-84. doi: 10.1111/jbl.12010
    [12]
    GANDOMI A, HAIDER M. Beyond the hype: big data concepts, methods, and analytics[J]. International journal of information management, 2015, 35(2): 137-144. doi: 10.1016/j.ijinfomgt.2014.10.007
    [13]
    AYDINER A S, TATOGLU E, BAYRAKTAR E, et al. Business analytics and firm performance: the mediating role of business process performance[J]. Journal of business research, 2019, 96: 228-237. doi: 10.1016/j.jbusres.2018.11.028
    [14]
    DALENOGARE L S, BENITEZ G B, AYALA N F, et al. The expected contribution of industry 4.0 technologies for industrial performance[J]. International journal of production economics, 2018, 204: 383-394. doi: 10.1016/j.ijpe.2018.08.019
    [15]
    CHEN P C L, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data[J]. Information sciences, 2014, 275(11): 314-347.
    [16]
    SIVARAJAH U, KAMAL MM, IRANI Z, et al. Critical analysis of big data challenges and analytical methods[J]. Journal of business research, 2017, 70: 263-286. doi: 10.1016/j.jbusres.2016.08.001
    [17]
    DELEN D, ZOLBANIN H M. The analytics paradigm in business research[J]. Journal of business research, 2018, 90: 186-195. doi: 10.1016/j.jbusres.2018.05.013
    [18]
    CAVALCANTE I M, FRAZZON E M, FORCELLINI F A, et al. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing[J]. International journal of information management, 2019, 49: 86-97. doi: 10.1016/j.ijinfomgt.2019.03.004
    [19]
    DWIVEDI Y K, HUGHES L, ISMAGILOVA E, et al. Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy[J]. International journal of information management, 2021, 57: 101994. doi: 10.1016/j.ijinfomgt.2019.08.002
    [20]
    MINSKY M. Steps toward artificial intelligence[J]. Preceedings of the IEEE, 1961, 49(1): 8-30.
    [21]
    MIN H. Artificial intelligence in supply chain management: theory and applications[J]. International journal of logistics research and applications, 2010, 13(1): 13-39. doi: 10.1080/13675560902736537
    [22]
    ZHAI Y M, SUN W Q, TSAI S B, et al. An empirical study on entrepreneurial orientation, absorptive capacity, and SMEs' innovation performance: a sustainable perspective[J]. Sustainability, 2018, 10(2): 314-328. doi: 10.3390/su10020314
    [23]
    IVANOV D, SETHI S, DOLGUI A, et al. A survey on control theory applications to operational systems, supply chain management, and industry 4.0[J]. Annual reviews in control, 2018, 46: 134-147. doi: 10.1016/j.arcontrol.2018.10.014
    [24]
    CHOI T M, WALLACE S W, WANG Y L. Big data analytics in operations management[J]. Production and operations management, 2018, 27(10): 1868-1883. doi: 10.1111/poms.12838
    [25]
    GUPTA M, GEORGE J F. Toward the development of a big data analytics capability[J]. Information & management, 2016, 53(8): 1049-1064.
    [26]
    SRINIVASAN R, SWINK M. An investigation of visibility and flexibility as complements to supply chain analytics: an organizational information processing theory perspective[J]. Production and operations management, 2018, 27(10): 1849-1867. doi: 10.1111/poms.12746
    [27]
    WAMBA S F, GUNASEKARAN A, AKTER S, et al. Big data analytics and firm performance: effects of dynamic capabilities[J]. Journal of business research, 2017, 70: 356-365. doi: 10.1016/j.jbusres.2016.08.009
    [28]
    陈秋霖, 许多, 周羿. 人口老龄化背景下人工智能的劳动力替代效应——基于跨国面板数据和中国省级面板数据的分析[J]. 中国人口科学, 2018(6): 30-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKRK201806004.htm
    [29]
    王泽宇. 企业人工智能技术强度与内部劳动力结构转化研究[J]. 经济学动态, 2020(11): 67-83.
    [30]
    王永钦, 董雯. 机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J]. 经济研究, 2020, 55(10): 159-175. doi: 10.3969/j.issn.1673-291X.2020.10.072
    [31]
    刘骏, 刘涛雄, 谢康. 机器人可以缓解老龄化带来的中国劳动力短缺问题吗[J]. 财贸经济, 2021, 42(8): 145-160. doi: 10.3969/j.issn.1002-8102.2021.08.013
    [32]
    闫雪凌, 朱博楷, 马超. 工业机器人使用与制造业就业: 来自中国的证据[J]. 统计研究, 2020, 37(1): 74-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYJ202001008.htm
    [33]
    余玲铮, 魏下海, 孙中伟, 等. 工业机器人、工作任务与非常规能力溢价——来自制造业"企业—工人"匹配调查的证据[J]. 管理世界, 2021, 37(1): 47-59. doi: 10.3969/j.issn.1002-5502.2021.01.004
    [34]
    朱琪, 刘红英. 人工智能技术变革的收入分配效应研究: 前沿进展与综述[J]. 中国人口科学, 2020(2): 111-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKRK202002010.htm
    [35]
    刘家强. 我国人口老龄化与经济新常态的传导机制[J]. 探索与争鸣, 2015(12): 15-18. doi: 10.3969/j.issn.1004-2229.2015.12.003
    [36]
    蔡兴. 人口老龄化倒逼了中国出口结构的优化升级吗[J]. 当代经济研究, 2016(8): 81-91. doi: 10.3969/j.issn.1005-2674.2016.08.010
    [37]
    蒋同明. 人口老龄化对中国劳动力市场的影响及应对举措[J]. 宏观经济研究, 2019(12): 148-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JJGA201912014.htm
    [38]
    BORLAND J, COELLI M. Are robots taking our jobs?[J]. Australian economic review, 2017, 50(4): 377-397. doi: 10.1111/1467-8462.12245
    [39]
    春燕, 郭海生, 王灿. 上海人口老龄化如何影响经济社会发展[J]. 上海经济研究, 2019(8): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HSYJ201908007.htm
    [40]
    陈杰. 人口老龄化、产业结构调整与经济增长——基于江苏的实证分析[J]. 华东经济管理, 2020, 34(2): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-HDJJ202002004.htm
    [41]
    张鹏, 梁辉. 城乡金融资源非均衡对我国城乡收入差距影响的实证分析[J]. 大连理工大学学报(社会科学版), 2011, 32(2): 17-21. doi: 10.3969/j.issn.1008-407X.2011.02.004
    [42]
    于晓萍, 栾大鹏. 探寻新常态下中国的经济增长动力[J]. 人民论坛, 2016(22): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-RMLT201622029.htm
    [43]
    杨扬, 姜文辉, 张卫芳. 人口老龄化、技术偏向是否加剧了中国劳动收入份额下降——基于中国省际面板数据的理论与实证分析[J]. 经济问题, 2018(6): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JJWT201806002.htm
    [44]
    BALTAGI B H. Estimating an economic model of crime using panel data from North Carolina[J]. Journal of applied econometrics, 2006, 21(4): 543-547. doi: 10.1002/jae.861
    [45]
    李兵, 任远. 人口结构是怎样影响经常账户不平衡的?——以第二次世界大战为工具变量的经验证据[J]. 经济研究, 2015, 50(10): 119-133.
    [46]
    HOECHLE D. Robust standard errors for panel regresssions with cross-sectional dependence[J]. Stata journal, 2007, 7(3);281-312. doi: 10.1177/1536867X0700700301
    [47]
    刘苓玲, 秦若涵. 人口老龄化、政府支出与劳动力就业——基于双重差分法的实证分析[J]. 西北人口, 2016, 37(6): 70-77. doi: 10.3969/j.issn.1007-0672.2016.06.010
    [48]
    张莉, 何晶, 马润泓. 房价如何影响劳动力流动?[J]. 经济研究, 2017, 52(8): 155-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ201708012.htm
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (580) PDF downloads (89) Cited by(1)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return