Citation: | MA Ning, CAO Yixuan. Effects of Napping Patterns on Nighttime Sleep Quality and Daytime Functioning in Different Regions[J]. Journal of South China normal University (Social Science Edition), 2024, (4): 30-43. |
The current study investigated the napping patterns and the effects of napping on nighttime sleep quality and daytime functioning in different regions of China. A total of 3, 320 samples from 31 provinces, municipalities, and autonomous regions were included through an online survey. The results showed that the proportion of the population who have napping habits was commonly high in each region, with a higher proportion in Southern China and Southwestern China, and a relatively lower proportion in Northeastern and Northern China. In addition, stable napping habits contributed significantly to improving subjective daytime functioning and nighttime sleep quality. However, an excessively long nap might lead to a decrease in nighttime sleep quality. Furthermore, the onset time of napping significantly predicted individuals' daytime functioning, and individuals who started napping between 13:00 and 14:00 reported their best performance during daytime. The present findings not only suggest rationalizing individuals' nap schedules but also provide evidence to further pay more attention to napping.
[1] |
BUXTON O M, MARCELLI E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States[J]. Social science & medicine, 2010, 71(5): 1027-1036.
|
[2] |
CAPPUCCIO F P, D'ELIA L, STRAZZULLO P, et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis[J]. Diabetes care, 2009, 33(2): 414-420.
|
[3] |
FARAUT B, TOUCHETTE E, GAMBLE H, et al. Short sleep duration and increased risk of hypertension: a primary care medicine investigation[J]. Journal of hypertension, 2012, 30(7): 1354-1363. doi: 10.1097/HJH.0b013e32835465e5
|
[4] |
PHILIP P, CHAUFTON C, ORRIOLS L, et al. Complaints of poor sleep and risk of traffic accidents: a population-based case-control study[J]. Plos one, 2014, 9(12): e114102. doi: 10.1371/journal.pone.0114102
|
[5] |
KNUTSON K L, SPIEGEL K, PENEV P, et al. The metabolic consequences of sleep deprivation[J]. Sleep medicine reviews, 2007, 11(3): 163-178. doi: 10.1016/j.smrv.2007.01.002
|
[6] |
MULLINGTON J M, HAACK M, TOTH M, et al. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation[J]. Progress in cardiovascular diseases, 2009, 51(4): 294-302. doi: 10.1016/j.pcad.2008.10.003
|
[7] |
FARAUT B, BOUDJELTIA K Z, DYZMA M, et al. Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction[J]. Brain, behavior, and immunity, 2011, 25(1): 16-24. doi: 10.1016/j.bbi.2010.08.001
|
[8] |
FARAUT B, BOUDJELTIA K Z, VANHAMME L, et al. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery[J]. Sleep medicine reviews, 2012, 16(2): 137-149. doi: 10.1016/j.smrv.2011.05.001
|
[9] |
SAUVET F, DROGOU C, BOUGARD C, et al. Vascular response to 1 week of sleep restriction in healthy subjects. A metabolic response?[J]. International journal of cardiology, 2015, 190: 246-255. doi: 10.1016/j.ijcard.2015.04.119
|
[10] |
OHAYON M M, SMOLENSKY M H, ROTH T. Consequences of shiftworking on sleep duration, sleepiness, and sleep attacks[J]. Chronobiology international, 2010, 27(3): 575-589. doi: 10.3109/07420521003749956
|
[11] |
CASTRO L S, POYARES D, LEGER D, et al. Objective prevalence of insomnia in the São Paulo, Brazil epidemiologic sleep study[J]. Annals of neurology, 2013, 74(4): 537-546. doi: 10.1002/ana.23945
|
[12] |
NUUTINEN T, ROOS E, RAY C, et al. Computer use, sleep duration and health symptoms: a cross-sectional study of 15-year olds in three countries[J]. International journal of public health, 2014, 59: 619-628. doi: 10.1007/s00038-014-0561-y
|
[13] |
FARAUT B, ANDRILLON T, VECCHIERINI M-F, et al. Napping: a public health issue. From epidemiological to laboratory studies[J]. Sleep medicine reviews, 2017, 35: 85-100.
|
[14] |
DUTHEIL F, DANINI B, BAGHERI R, et al. Effects of a short daytime nap on the cognitive performance: a systematic review and meta-analysis[J]. International journal of environmental research and public health, 2021, 18(19): 10212. doi: 10.3390/ijerph181910212
|
[15] |
KOMADA Y, ASAOKA S, ABE T, et al. Relationship between napping pattern and nocturnal sleep among Japanese nursery school children[J]. Sleep medicine, 2012, 13(1): 107-110. doi: 10.1016/j.sleep.2011.10.017
|
[16] |
REA E M, NICHOLSON L M, MEAD M P, et al. Daily relations between nap occurrence, duration, and timing and nocturnal sleep patterns in college students[J]. Sleep health, 2022, 8(4): 356-363. doi: 10.1016/j.sleh.2022.05.002
|
[17] |
MCDEVITT E A, ALAYNICK W A, MEDNICK S C. The effect of nap frequency on daytime sleep architecture[J]. Physiology & behavior, 2012, 107(1): 40-44.
|
[18] |
TANAKA H, TAIRA K, ARAKAWA M, et al. Short naps and exercise improve sleep quality and mental health in the elderly[J]. Psychiatry and clinical neurosciences, 2002, 56(3): 233-234. doi: 10.1046/j.1440-1819.2002.00995.x
|
[19] |
YOON I Y, KRIPKE D F, YOUNGSTEDT S D, et al. Actigraphy suggests age-related differences in napping and nocturnal sleep[J]. Journal of sleep research, 2003, 12(2): 87-93. doi: 10.1046/j.1365-2869.2003.00345.x
|
[20] |
MOGRASS M, ABI-JAOUDE J, FRIMPONG E, et al. The effects of napping on nighttime sleep in healthy young adults[J]. Journal of sleep research, 2022, 31(5): e13578. doi: 10.1111/jsr.13578
|
[21] |
JACKSON M L, HOWARD M E, BARNES M. Cognition and daytime functioning in sleep-related breathing disorders[J]. Progress in brain research, 2011, 190: 53-68.
|
[22] |
彭雨笛, 谢恬, 马宁. 日间节律对个体认知行为的影响[J]. 心理科学, 2023, 46(2): 282-290.
|
[23] |
MILNER C E, COTE K A. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[J]. Journal of sleep research, 2009, 18(2): 272-281. doi: 10.1111/j.1365-2869.2008.00718.x
|
[24] |
HAO C, XIE T, PENG Y, et al. Effect of homeostatic pressure on daytime vigilance performance: evidence from behaviour and resting-state EEG[J]. Journal of sleep research, 2023, 32(5): e13890. doi: 10.1111/jsr.13890
|
[25] |
CAO Y, LI J, OU S, et al. Effect of homeostatic pressure and circadian rhythm on the task-swit-ching: evidence from drift diffusion model and ERP[J]. International journal of psychophysiology, 2024, 195: 112263. doi: 10.1016/j.ijpsycho.2023.112263
|
[26] |
FARAUT B, NAKIB S, DROGOU C, et al. Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction[J]. The journal of clinical endocrinology & metabolism, 2015, 100(3): E416-E426.
|
[27] |
MILLER A L, SEIFER R, CROSSIN R, et al. Toddler's self-regulation strategies in a challenge context are nap-dependent[J]. Journal of sleep research, 2015, 24(3): 279-287. doi: 10.1111/jsr.12260
|
[28] |
KORMAN M, DOYON J, DOLJANSKY J, et al. Daytime sleep condenses the time course of motor memory consolidation[J]. Nature neuroscience, 2007, 10(9): 1206-1213. doi: 10.1038/nn1959
|
[29] |
MANDER B A, SANTHANAM S, SALETIN J M, et al. Wake deterioration and sleep restoration of human learning[J]. Current biology, 2011, 21(5): R183-R184. doi: 10.1016/j.cub.2011.01.019
|
[30] |
LEONG R L, LAU T, DICOM A R, et al. Influence of mid-afternoon nap duration and sleep parameters on memory encoding, mood, processing speed, and vigilance[J]. Sleep, 2023, 46(4): zsad025. doi: 10.1093/sleep/zsad025
|
[31] |
TASSI P, MUZET A. Sleep inertia[J]. Sleep medicine reviews, 2000, 4(4): 341-353. doi: 10.1053/smrv.2000.0098
|
[32] |
郑棒, 林丽玲, 余灿清, 等. 中国成年人睡眠时长、午睡与失眠症状的分布及关联研究[J]. 中华流行病学杂志, 2017, 38(4): 452-456.
|
[33] |
刘永闯, 郭丽娜, 刘堃. 沃里克-爱丁堡积极心理健康量表在老年人中应用的效度和信度[J]. 中国心理卫生杂志, 2016, 30(3): 174-178.
|
[34] |
吴春薇, 刘占东, 张拥波, 等. 个人疲劳强度问卷中译本在脑梗死患者中的临床应用与评价[J]. 中国康复理论与实践, 2008, 14(2): 116-118.
|
[35] |
MONSIVAIS D, BHATTACHARYA K, GHOSH A, et al. Seasonal and geographical impact on human resting periods[J]. Scientific reports, 2017, 7(1): 10717. doi: 10.1038/s41598-017-11125-z
|
[36] |
SCHULTE P M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment[J]. The journal of experimental biology, 2015, 218(12): 1856-1866. doi: 10.1242/jeb.118851
|
[37] |
HARGREAVES M. Metabolic factors in fatigue[J]. Sports science, 2005, 18(3): 99-107.
|
[38] |
LEONG R L, LO J C, CHEE M W. Systematic review and meta-analyses on the effects of afternoon napping on cognition[J]. Sleep medicine reviews, 2022: 101666.
|
[39] |
LEONG R L, YU N, ONG J L, et al. Memory performance following napping in habitual and non-habitual nappers[J]. Sleep, 2021, 44(6): zsaa277. doi: 10.1093/sleep/zsaa277
|
[40] |
TAKAHASHI M. The role of prescribed napping in sleep medicine[J]. Sleep medicine reviews, 2003, 7(3): 227-235. doi: 10.1053/smrv.2002.0241
|
[41] |
MASSIMINI M, FERRARELLI F, ESSER S K, et al. Triggering sleep slow waves by transcranial magnetic stimulation[J]. Proceedings of the national academy of sciences, 2007, 104(20): 8496-8501. doi: 10.1073/pnas.0702495104
|
[42] |
NGO H-V V, MARTINETZ T, BORN J, et al. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory[J]. Neuron, 2013, 78(3): 545-553. doi: 10.1016/j.neuron.2013.03.006
|
[43] |
TONONI G, RIEDNER B, HULSE B, et al. Enhancing sleep slow waves with natural stimuli[J]. Medicamundi, 2010, 54(2): 73-79.
|
[44] |
OU S, CAO Y, XIE T, et al. Effect of homeostatic pressure and circadian arousal on the storage and executive components of working memory: evidence from EEG power spectrum[J]. Biological psychology, 2023, 184: 108721. doi: 10.1016/j.biopsycho.2023.108721
|
[45] |
YE L, HUTTON JOHNSON S, KEANE K, et al. Napping in college students and its relationship with nighttime sleep[J]. Journal of American college health, 2015, 63(2): 88-97. doi: 10.1080/07448481.2014.983926
|
[46] |
BORBÉLY A A, DAAN S, WIRZ-JUSTICE A, et al. The two-process model of sleep regulation: a reappraisal[J]. Journal of sleep research, 2016, 25(2): 131-143. doi: 10.1111/jsr.12371
|
[47] |
ACHERMANN P, DIJK D-J, BRUNNER D P, et al. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations[J]. Brain research bulletin, 1993, 31(1-2): 97-113. doi: 10.1016/0361-9230(93)90016-5
|
[48] |
LI P, GAO L, YU L, et al. Daytime napping and Alzheimer's dementia: a potential bidirectional relationship[J]. Alzheimer's & Dementia, 2023, 19(1): 158-168.
|
[49] |
LENG Y, REDLINE S, STONE K L, et al. Objective napping, cognitive decline, and risk of cognitive impairment in older men[J]. Alzheimer's & Dementia, 2019, 15(8): 1039-1047.
|