Citation: | NORTHOFF Georg, XIE Musi, QIN Pengmin. The Link Between Brain and Symptoms in the Perspective of Spatiotemporal Psychopathology[J]. Journal of South China normal University (Social Science Edition), 2022, (5): 5-16. |
[1] |
PARNAS J, SASS L A, ZAHAVI D. Recent developments in philosophy of psychopathology[J]. Current opinion in psychiatry, 2008, 21(6): 578-584. doi: 10.1097/YCO.0b013e32830e4610
|
[2] |
PARNAS J, SASS L A, ZAHAVI D. Rediscovering psychopathology: the epistemology and phenomenology of the psychiatric object[J]. Schizophrenia bulletin, 2013, 39(2): 270-277. doi: 10.1093/schbul/sbs153
|
[3] |
STANGHELLINI G. A hermeneutic framework for psychopathology[J]. Psychopathology, 2009, 43(5): 319-326.
|
[4] |
STANGHELLINI G. The meanings of psychopathology[J]. Current opinion in psychiatry, 2009, 22(6): 559-564. doi: 10.1097/YCO.0b013e3283318e36
|
[5] |
STANGHELLINI G, BROOME M R. Psychopathology as the basic science of psychiatry[J]. The british journal of psychiatry, 2014, 205(3): 169-170. doi: 10.1192/bjp.bp.113.138974
|
[6] |
FUCHS T. Temporality and psychopathology[J]. Phenomenology and the cognitive sciences, 2013, 12(1): 75-104. doi: 10.1007/s11097-010-9189-4
|
[7] |
GIOVANNI S, MATTHEW B, ANTHONY V F. The Oxford handbook of phenomenological psychopathology[M]. New York: Oxford Unviersity Press, 2018: 1-1184.
|
[8] |
NORTHOFF G. Spatiotemporal psychopathology I: is depression a spatiotemporal disorder of the brain's resting state?[J]. Journal of affective disorder, 2016, 190: 854-866. doi: 10.1016/j.jad.2015.05.007
|
[9] |
NORTHOFF G. Spatiotemporal psychopathology II: how does a psychopathology of the brain's resting state look like?[J]. Journal of affective disorder, 2016, 190: 867-879. doi: 10.1016/j.jad.2015.05.008
|
[10] |
STANGHELLINI G, BALLERINI M. What is it like to be a person with schizophrenia in the social world? A first-person perspective study on Schizophrenic dissociality——part 1: state of the art[J]. Psychopathology, 2011, 44(3): 172-182. doi: 10.1159/000322637
|
[11] |
HALLIGAN P W, DAVID A S. Cognitive neuropsychiatry: towards a scientific psychopathology[J]. Nature reviews neuroscience, 2001, 2(3): 209-215. doi: 10.1038/35058586
|
[12] |
PANKSEPP J. Textbook of biological psychiatry[M]. New York: Wiley Online Library, 2004: 1-736.
|
[13] |
SHEPPES G, SURI G, GROSS J J. Emotion regulation and psychopathology[J]. Annual review of clinical psychology, 2015, 11: 379-405. doi: 10.1146/annurev-clinpsy-032814-112739
|
[14] |
NORTHOFF G, WAINIO-THEBERGE S, EVERS K. Is temporo-spatial dynamics the "common currency" of brain and mind? In quest of "spatiotemporal neuroscience"[J]. Physics of life reviews, 2020, 33: 34-54. doi: 10.1016/j.plrev.2019.05.002
|
[15] |
NORTHOFF G, WAINIO-THEBERGE S, EVERS K. Spatiotemporal neuroscience-what is it and why we need it[J]. Physics of life reviews, 2020, 33: 78-87. doi: 10.1016/j.plrev.2020.06.005
|
[16] |
IMMANUEL K. Critique of pure reason[M]. Cambridge: Cambridge University Press, 1998: 1-784.
|
[17] |
NORTHOFF G. From emotions to consciousness - a neuro-phenomenal and neuro-relational approach[J]. Frontiers in psychology, 2012, 3: 303.
|
[18] |
NORTHOFF G. The brain's spontaneous activity and its psychopathological symptoms-"Spatiotemporal binding and integration"[J]. Progress in neuro-psychopharmacology and biological psychiatry, 2018, 80(Pt B): 81-90.
|
[19] |
NORTHOFF G, WIEBKING C, FEINBERG T E A. The "resting-state hypothesis" of major depressive disorder-a translational subcortical-cortical framework for a system disorder[J]. Neuroscience and biobehavioral reviews, 2011, 35: 1929-1945. doi: 10.1016/j.neubiorev.2010.12.007
|
[20] |
FINGELKURTS A A F A. Brain space and time in mental disorders: paradigm shift in biological psychiatry[J]. International journal of psychiatry in medicine, 2019, 54(1): 53-63. doi: 10.1177/0091217418791438
|
[21] |
BROOME M R, ZÁNYI E, HAMBORG T, et al. A high-fidelity virtual environment for the study of paranoia[J]. Schizophrenia research and treatment, 2013, 63: 538185.
|
[22] |
NORTHOFF G. "Common currency" between experience and brain: spatiotemporal psychopathology of the resting state in depression[J]. Advances in experimental medicine and biology, 2021, 1305: 71-84.
|
[23] |
BUZSÁKI G, LLINÁS R. Space and time in the brain[J]. Science, 2017, 358(6362): 482-485. doi: 10.1126/science.aan8869
|
[24] |
DRAYTON L, FURMAN M. Thy mind, thy brain and time[J]. Trends in cognitive sciences, 2018, 41(10): 641-643.
|
[25] |
FINGELKURTS A A, FINGELKURTS A A, NEVES C F. Natural world physical, brain operational, and mind phenomenal space-time[J]. Physics of life reviews, 2010, 7(2): 195-249. doi: 10.1016/j.plrev.2010.04.001
|
[26] |
LIU T T, NALCI A, FALAHPOUR M. The global signal in fMRI: nuisance or information?[J]. Neuroimage, 2017, 150: 213. doi: 10.1016/j.neuroimage.2017.02.036
|
[27] |
LIU X, ZHANG N, CHANG C, et al. Co-activation patterns in resting-state fMRI signals[J]. Neuroimage, 2018, 180: 485-494. doi: 10.1016/j.neuroimage.2018.01.041
|
[28] |
POWER J D, PLITT M, LAUMANN T O, et al. Sources and implications of whole-brain fMRI signals in humans[J]. Neuroimage, 2017, 146: 609-625. doi: 10.1016/j.neuroimage.2016.09.038
|
[29] |
ZHANG J, HUANG Z, TUMATI S, et al. Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns[J]. PLoS biolology, 2020, 18: 1-22.
|
[30] |
MURPHY K, FOX M D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI[J]. Neuroimage, 2017, 154: 169-173. doi: 10.1016/j.neuroimage.2016.11.052
|
[31] |
LIU T T. Noise contributions to the fMRI signal: an overview[J]. Neuroimage, 2016, 143: 141-151. doi: 10.1016/j.neuroimage.2016.09.008
|
[32] |
CHAI X J, CASTAÑÁN A N, ÖNGÜR D, et al. Anticorrelations in resting state networks without global signal regression[J]. Neuroimage, 2012, 59: 1420-1428. doi: 10.1016/j.neuroimage.2011.08.048
|
[33] |
NALCI A, RAO B D, LIU T T. Global signal regression acts as a temporal downweighting process in resting-state fMRI[J]. Neuroimage, 2017, 152: 602-618. doi: 10.1016/j.neuroimage.2017.01.015
|
[34] |
WONG C W, OLAFSSON V, TAL O, et al. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI[J]. Neuroimage, 2012, 63: 356-364. doi: 10.1016/j.neuroimage.2012.06.035
|
[35] |
BIRN R M, DIAMOND J B, SMITH M A, et al. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI[J]. Neuroimage, 2006, 31: 1536-1548. doi: 10.1016/j.neuroimage.2006.02.048
|
[36] |
BIRN R M, SMITH M A, JONES T B, et al. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration[J]. Neuroimage, 2008, 40: 644-654. doi: 10.1016/j.neuroimage.2007.11.059
|
[37] |
ORBAN C, KONG R, LI J, et al. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity[J]. PLoS biolology, 2020, 18: e3000602. doi: 10.1371/journal.pbio.3000602
|
[38] |
UDDIN L Q. Mixed signals: on separating brain signal from noise[J]. Trends in cognitive sciences, 2017, 21: 405-406. doi: 10.1016/j.tics.2017.04.002
|
[39] |
UDDIN L Q. Bring the noise: reconceptualizing spontaneous neural activity[J]. Trends in cognitive sciences, 2020, 24: 734-746. doi: 10.1016/j.tics.2020.06.003
|
[40] |
LI J, BOLT T, BZDOK D, et al. Topography and behavioral relevance of the global signal in the human brain[J]. Scientific reports, 2019, 9(1): 14286. doi: 10.1038/s41598-019-50750-8
|
[41] |
SCHOLVINCK M L, MAIER A, YE F Q, et al. Neural basis of global resting-state fMRI activity[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107: 10238-10243. doi: 10.1073/pnas.0913110107
|
[42] |
SCHOLVINCK M L, SALEEM A B, BENUCCI A, et al. Cortical state determines global variability and correlations in visual cortex[J]. Journal of neuroscience, 2015, 35: 170-178. doi: 10.1523/JNEUROSCI.4994-13.2015
|
[43] |
TURCHI J, CHANG C, YE F Q, et al. The basal forebrain regulates global resting-state fMRI fluctuations[J]. Neuron, 2018, 97: 940-952. doi: 10.1016/j.neuron.2018.01.032
|
[44] |
WEN H, LIU Z. Broadband electrophysiological dynamics contribute to global resting-state fMRI signal[J]. Journal of neuroscience, 2016, 36: 6030-6040. doi: 10.1523/JNEUROSCI.0187-16.2016
|
[45] |
LEOPOLD D A, MURAYAMA Y, LOGOTHETIS N K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging[J]. Cerebral cortex, 2003, 13(4): 422-433. doi: 10.1093/cercor/13.4.422
|
[46] |
CHANG C, LEOPOLD D A, SCHÖLVINCK M L, et al. Tracking brain arousal fluctuations with fMRI[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(16): 4518-4523. doi: 10.1073/pnas.1520613113
|
[47] |
YANG G J, MURRAY J D, GLASSER M, et al. Altered global signal topography in schizophrenia[J]. Cerebral cortex, 2017, 27: 5156-5169.
|
[48] |
YANG G J, MURRAY J D, REPOVS G, et al. Altered global brain signal in schizophrenia[J]. Proceedings of the national academy of sciences of the United States of America, 2014, 111: 7438-7443. doi: 10.1073/pnas.1405289111
|
[49] |
WANG X, LIAO W, HAN S, et al. Altered dynamic global signal topography in antipsychotic-naive adolescents with early-onset schizophrenia[J]. Schizophrenia research, 2019, 208: 308-316. doi: 10.1016/j.schres.2019.01.035
|
[50] |
ARGYELAN M, GALLEGO J A, ROBINSON D G, et al. Abnormal resting state fMRI activity predicts processing speed deficits in first-episode psychosis[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2015, 40: 1631-1639. doi: 10.1038/npp.2015.7
|
[51] |
ARGYELAN M, IKUTA T, DEROSSE P, et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder[J]. Schizophrenia bulletin, 2014, 40: 100-110. doi: 10.1093/schbul/sbt092
|
[52] |
HAHAMY A, CALHOUN V, PEARLSON G, et al. Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging[J]. Brain connectivity, 2014, 4: 395-403. doi: 10.1089/brain.2014.0244
|
[53] |
PARNAS J. The core gestalt of schizophrenia[J]. World psychiatry, 2012, 11: 67-69. doi: 10.1016/j.wpsyc.2012.05.002
|
[54] |
NORTHOFF G, DUNCAN N W. How do abnormalities in the brain's spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology[J]. Progress in neurobiology, 2016, 145-146: 26-45. doi: 10.1016/j.pneurobio.2016.08.003
|
[55] |
ZHANG J, MAGIONCALDA P, HUANG Z, et al. Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression[J]. Schizophrenia bulletin, 2019, 45: 902-910. doi: 10.1093/schbul/sby138
|
[56] |
GOTTS S J, SIMMONS W K, MILBURY L A. Fractionation of social brain circuits in autism spectrum disorders[J]. Brain, 2012, 135: 2711-2725. doi: 10.1093/brain/aws160
|
[57] |
ABBAS A, BASSIL YS. K. Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder[J]. Neuroimage: clinical, 2019, 21: 101653. doi: 10.1016/j.nicl.2019.101653
|
[58] |
SCALABRINI A, VAI B, POLETTI S E A. All roads lead to the default-mode network-global source of dmn abnormalities in major depressive disorder[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2020, 45: 2058-2069. doi: 10.1038/s41386-020-0785-x
|
[59] |
ABDALLAH C G, AVERILL C L, AL S R E. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment[J]. Biological psychiatry: cognitive neuroscience and neuroimaging, 2017, 2: 566-574. doi: 10.1016/j.bpsc.2017.04.006
|
[60] |
SCHEINOST D, HOLMES S E, DELLAGIOIA N E A. Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2018, 43: 1119-1127. doi: 10.1038/npp.2017.229
|
[61] |
ZHANG L, WU H, XU J E A. Abnormal global functional connectivity patterns in medication-free major depressive disorder[J]. Frontiers in neuroscience, 2018, 12: 692. doi: 10.3389/fnins.2018.00692
|
[62] |
MURROUGH J W, ABDALLAH C G, ANTICEVIC A E A. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder[J]. Human brain mapping, 2016, 37: 3214-3223. doi: 10.1002/hbm.23235
|
[63] |
BUZSÁKI G. Rhythms of the Brain[M]. New York: Oxford University Press, 2006: 1-464.
|
[64] |
HE B J, ZEMPEL J M, SNYDER A Z, et al. The temporal structures and functional significance of scale-free brain activity[J]. Neuron, 2010, 66: 353-369. doi: 10.1016/j.neuron.2010.04.020
|
[65] |
HE B J. Scale-free brain activity: past, present, and future[J]. Trends in cognitive sciences, 2014, 18(9): 480-487. doi: 10.1016/j.tics.2014.04.003
|
[66] |
HUANG Z, OBARA N, DAVIS H P J, et al. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness[J]. Neuropsychologia, 2016, 82: 161-170. doi: 10.1016/j.neuropsychologia.2016.01.025
|
[67] |
LINKENKAER-HANSEN K, NIKOULINE V V, PALVA J M, et al. Long-range temporal correlations and scaling behavior in human brain oscillations[J]. Journal of neuroscience, 2001, 21: 1370-1377. doi: 10.1523/JNEUROSCI.21-04-01370.2001
|
[68] |
NORTHOFF G, HUANG Z, How do the brain's time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC)[J]. Neuroscience and biobehavioral reviews, 2017, 80: 630-645. doi: 10.1016/j.neubiorev.2017.07.013
|
[69] |
HASSON U, CHEN J, HONEY C J. Hierarchical process memory: memory as an integral component of information processing[J]. Trends in cognitive sciences, 2015, 19: 304-313. doi: 10.1016/j.tics.2015.04.006
|
[70] |
NORTHOFF G. Personal identity and cortical midline structure (CMS): do temporal features of CMS neural activity transform into "self-continuity"?[J]. Psychological inquiry, 2017, 28: 122-131. doi: 10.1080/1047840X.2017.1337396
|
[71] |
GOLESORKHI M, GOMEZ-PILAR J, TUMATI S, et al. Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization[J]. Communications biology, 2021, 4: 1-14. doi: 10.1038/s42003-020-01566-0
|
[72] |
GOLESORKHI M G-P J, ZILIO F, BERBERIAN N, et al. The brain and its time: intrinsic neural timescales are key for input processing[J]. Communications biology, 2021, 16: 970.
|
[73] |
WOLFF A, BERBERIAN N, GOLESORKHI M, et al. Intrinsic neural timescales: temporal integration and segregation[J]. Trends in cognitive sciences, 2022, 26(2): 159-173. doi: 10.1016/j.tics.2021.11.007
|
[74] |
ITO T, HEARNE L J, COLE M W. A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales[J]. Neuroimage, 2020, 221: 117141. doi: 10.1016/j.neuroimage.2020.117141
|
[75] |
RAUT R V, MITRA A, MAREK S, et al. Organization of propagated intrinsic brain activity in individual humans[J]. Cerebral cortex, 2020, 30: 1716-1734.
|
[76] |
HUANG Z, ZHANG J, WU J, et al. Disrupted neural variability during propofol-induced sedation and unconsciousness[J]. Human brain mapping, 2018, 39: 4533-4544.
|
[77] |
TAGLIAZUCCHI E, ROSEMAN L, KAELEN M, et al. Increased global functional connectivity correlates with LSD-induced ego dissolution[J]. Current biology, 2016, 26: 1043-1050.
|
[78] |
TAGLIAZUCCHI E, VON WEGNER F, MORZELEWSKI A, et al. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110: 15419-15424.
|
[79] |
ZHANG J, HUANG Z, CHEN Y, et al. Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia[J]. Human brain mapping, 2018, 39: 2035-2046. doi: 10.1002/hbm.23984
|
[80] |
ZILIO F, GOMEZ-PILAR J, CAO S, et al. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states[J]. Neuroimage, 2021, 226: 117579. doi: 10.1016/j.neuroimage.2020.117579
|
[81] |
WOLFF A, DI GIOVANNI D A, G?MEZ-PILAR J, et al. The temporal signature of self: temporal measures of resting-state EEG predict self-consciousness. Human brain mapping[J]. 2019, 40(3): 789-803.
|
[82] |
WATANABE T, REES G M N. Atypical intrinsic neural timescale in autism[J]. eLife, 2019, 8: e42256. doi: 10.7554/eLife.42256
|
[83] |
DAMIANI S, SCALABRINI A, GOMEZ-PILAR J, et al. Increased scale-free dynamics in salience network in adult high-functioning autism[J]. Neuroimage: clinical, 2019, 21: 101634. doi: 10.1016/j.nicl.2018.101634
|
[84] |
DAMIANI S, SCALABRINI A, KU H L, et al. From local to global and back: an exploratory study on cross-scale desynchronization in schizophrenia and its relation to thought disorders[J]. Schizophrenia research, 2021, 231: 10-12. doi: 10.1016/j.schres.2021.02.021
|
[85] |
NORTHOFF G, SANDSTEN KE, NORDGAARD J E A. The self and its prolonged intrinsic neural timescale in schizophrenia[J]. Schizophrenia bulletin, 2021, 47: 170-179. doi: 10.1093/schbul/sbaa083
|
[86] |
WENGLER K, GOLDBERG A T, CHAHINE G H G. Distinct hierarchical alterations of intrinsic neural timescales account for different manifestations of psychosis[J]. eLife, 2020, 9: e56151
|
[87] |
USCĂTESCU LC, SAID-YÜREKLI S, KRONBICHLER L, et al. Reduced intrinsic neural timescales in schizophrenia along posterior parietal and occipital areas[J]. NPJ schizophrenia, 2021, 7(1): 55.
|
[88] |
GUPTA A, WOLFF A, NORTHOFF D G. Extending the "resting state hypothesis of depression"——dynamics and topography of abnormal rest-task modulation[J]. Psychiatry research neuroimaging, 2021, 317: 111367.
|