• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
NORTHOFF Georg, XIE Musi, QIN Pengmin. The Link Between Brain and Symptoms in the Perspective of Spatiotemporal Psychopathology[J]. Journal of South China normal University (Social Science Edition), 2022, (5): 5-16.
Citation: NORTHOFF Georg, XIE Musi, QIN Pengmin. The Link Between Brain and Symptoms in the Perspective of Spatiotemporal Psychopathology[J]. Journal of South China normal University (Social Science Edition), 2022, (5): 5-16.

The Link Between Brain and Symptoms in the Perspective of Spatiotemporal Psychopathology

More Information
  • Received Date: March 31, 2022
  • Available Online: November 14, 2022
  • How can we characterize psychopathological symptoms and connect them to the brain? Current psychopathological symptoms only focus on either the symptoms themselves or predominantly on the brain. This leaves open their intimate connection. A novel approach, spatiotemporal psychopathology, proposes that the brain inner spatiotemporal organization of its neural activity provides the spatiotemporal organization of the psychopathological symptoms. Specifically, the brains' neuronal topography and dynamic is manifest in a more or less analogous spatiotemporal organization on the mental level, i. e., mental topography and dynamic. This is strongly supported by various examples including major depressive disorder, bipolar disorder, schizophrenia, and autism. We therefore conclude that spatiotemporal psychopathology provides a promising approach to intimately connect brain and symptoms.
  • [1]
    PARNAS J, SASS L A, ZAHAVI D. Recent developments in philosophy of psychopathology[J]. Current opinion in psychiatry, 2008, 21(6): 578-584. doi: 10.1097/YCO.0b013e32830e4610
    [2]
    PARNAS J, SASS L A, ZAHAVI D. Rediscovering psychopathology: the epistemology and phenomenology of the psychiatric object[J]. Schizophrenia bulletin, 2013, 39(2): 270-277. doi: 10.1093/schbul/sbs153
    [3]
    STANGHELLINI G. A hermeneutic framework for psychopathology[J]. Psychopathology, 2009, 43(5): 319-326.
    [4]
    STANGHELLINI G. The meanings of psychopathology[J]. Current opinion in psychiatry, 2009, 22(6): 559-564. doi: 10.1097/YCO.0b013e3283318e36
    [5]
    STANGHELLINI G, BROOME M R. Psychopathology as the basic science of psychiatry[J]. The british journal of psychiatry, 2014, 205(3): 169-170. doi: 10.1192/bjp.bp.113.138974
    [6]
    FUCHS T. Temporality and psychopathology[J]. Phenomenology and the cognitive sciences, 2013, 12(1): 75-104. doi: 10.1007/s11097-010-9189-4
    [7]
    GIOVANNI S, MATTHEW B, ANTHONY V F. The Oxford handbook of phenomenological psychopathology[M]. New York: Oxford Unviersity Press, 2018: 1-1184.
    [8]
    NORTHOFF G. Spatiotemporal psychopathology I: is depression a spatiotemporal disorder of the brain's resting state?[J]. Journal of affective disorder, 2016, 190: 854-866. doi: 10.1016/j.jad.2015.05.007
    [9]
    NORTHOFF G. Spatiotemporal psychopathology II: how does a psychopathology of the brain's resting state look like?[J]. Journal of affective disorder, 2016, 190: 867-879. doi: 10.1016/j.jad.2015.05.008
    [10]
    STANGHELLINI G, BALLERINI M. What is it like to be a person with schizophrenia in the social world? A first-person perspective study on Schizophrenic dissociality——part 1: state of the art[J]. Psychopathology, 2011, 44(3): 172-182. doi: 10.1159/000322637
    [11]
    HALLIGAN P W, DAVID A S. Cognitive neuropsychiatry: towards a scientific psychopathology[J]. Nature reviews neuroscience, 2001, 2(3): 209-215. doi: 10.1038/35058586
    [12]
    PANKSEPP J. Textbook of biological psychiatry[M]. New York: Wiley Online Library, 2004: 1-736.
    [13]
    SHEPPES G, SURI G, GROSS J J. Emotion regulation and psychopathology[J]. Annual review of clinical psychology, 2015, 11: 379-405. doi: 10.1146/annurev-clinpsy-032814-112739
    [14]
    NORTHOFF G, WAINIO-THEBERGE S, EVERS K. Is temporo-spatial dynamics the "common currency" of brain and mind? In quest of "spatiotemporal neuroscience"[J]. Physics of life reviews, 2020, 33: 34-54. doi: 10.1016/j.plrev.2019.05.002
    [15]
    NORTHOFF G, WAINIO-THEBERGE S, EVERS K. Spatiotemporal neuroscience-what is it and why we need it[J]. Physics of life reviews, 2020, 33: 78-87. doi: 10.1016/j.plrev.2020.06.005
    [16]
    IMMANUEL K. Critique of pure reason[M]. Cambridge: Cambridge University Press, 1998: 1-784.
    [17]
    NORTHOFF G. From emotions to consciousness - a neuro-phenomenal and neuro-relational approach[J]. Frontiers in psychology, 2012, 3: 303.
    [18]
    NORTHOFF G. The brain's spontaneous activity and its psychopathological symptoms-"Spatiotemporal binding and integration"[J]. Progress in neuro-psychopharmacology and biological psychiatry, 2018, 80(Pt B): 81-90.
    [19]
    NORTHOFF G, WIEBKING C, FEINBERG T E A. The "resting-state hypothesis" of major depressive disorder-a translational subcortical-cortical framework for a system disorder[J]. Neuroscience and biobehavioral reviews, 2011, 35: 1929-1945. doi: 10.1016/j.neubiorev.2010.12.007
    [20]
    FINGELKURTS A A F A. Brain space and time in mental disorders: paradigm shift in biological psychiatry[J]. International journal of psychiatry in medicine, 2019, 54(1): 53-63. doi: 10.1177/0091217418791438
    [21]
    BROOME M R, ZÁNYI E, HAMBORG T, et al. A high-fidelity virtual environment for the study of paranoia[J]. Schizophrenia research and treatment, 2013, 63: 538185.
    [22]
    NORTHOFF G. "Common currency" between experience and brain: spatiotemporal psychopathology of the resting state in depression[J]. Advances in experimental medicine and biology, 2021, 1305: 71-84.
    [23]
    BUZSÁKI G, LLINÁS R. Space and time in the brain[J]. Science, 2017, 358(6362): 482-485. doi: 10.1126/science.aan8869
    [24]
    DRAYTON L, FURMAN M. Thy mind, thy brain and time[J]. Trends in cognitive sciences, 2018, 41(10): 641-643.
    [25]
    FINGELKURTS A A, FINGELKURTS A A, NEVES C F. Natural world physical, brain operational, and mind phenomenal space-time[J]. Physics of life reviews, 2010, 7(2): 195-249. doi: 10.1016/j.plrev.2010.04.001
    [26]
    LIU T T, NALCI A, FALAHPOUR M. The global signal in fMRI: nuisance or information?[J]. Neuroimage, 2017, 150: 213. doi: 10.1016/j.neuroimage.2017.02.036
    [27]
    LIU X, ZHANG N, CHANG C, et al. Co-activation patterns in resting-state fMRI signals[J]. Neuroimage, 2018, 180: 485-494. doi: 10.1016/j.neuroimage.2018.01.041
    [28]
    POWER J D, PLITT M, LAUMANN T O, et al. Sources and implications of whole-brain fMRI signals in humans[J]. Neuroimage, 2017, 146: 609-625. doi: 10.1016/j.neuroimage.2016.09.038
    [29]
    ZHANG J, HUANG Z, TUMATI S, et al. Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns[J]. PLoS biolology, 2020, 18: 1-22.
    [30]
    MURPHY K, FOX M D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI[J]. Neuroimage, 2017, 154: 169-173. doi: 10.1016/j.neuroimage.2016.11.052
    [31]
    LIU T T. Noise contributions to the fMRI signal: an overview[J]. Neuroimage, 2016, 143: 141-151. doi: 10.1016/j.neuroimage.2016.09.008
    [32]
    CHAI X J, CASTAÑÁN A N, ÖNGÜR D, et al. Anticorrelations in resting state networks without global signal regression[J]. Neuroimage, 2012, 59: 1420-1428. doi: 10.1016/j.neuroimage.2011.08.048
    [33]
    NALCI A, RAO B D, LIU T T. Global signal regression acts as a temporal downweighting process in resting-state fMRI[J]. Neuroimage, 2017, 152: 602-618. doi: 10.1016/j.neuroimage.2017.01.015
    [34]
    WONG C W, OLAFSSON V, TAL O, et al. Anti-correlated networks, global signal regression, and the effects of caffeine in resting-state functional MRI[J]. Neuroimage, 2012, 63: 356-364. doi: 10.1016/j.neuroimage.2012.06.035
    [35]
    BIRN R M, DIAMOND J B, SMITH M A, et al. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI[J]. Neuroimage, 2006, 31: 1536-1548. doi: 10.1016/j.neuroimage.2006.02.048
    [36]
    BIRN R M, SMITH M A, JONES T B, et al. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration[J]. Neuroimage, 2008, 40: 644-654. doi: 10.1016/j.neuroimage.2007.11.059
    [37]
    ORBAN C, KONG R, LI J, et al. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity[J]. PLoS biolology, 2020, 18: e3000602. doi: 10.1371/journal.pbio.3000602
    [38]
    UDDIN L Q. Mixed signals: on separating brain signal from noise[J]. Trends in cognitive sciences, 2017, 21: 405-406. doi: 10.1016/j.tics.2017.04.002
    [39]
    UDDIN L Q. Bring the noise: reconceptualizing spontaneous neural activity[J]. Trends in cognitive sciences, 2020, 24: 734-746. doi: 10.1016/j.tics.2020.06.003
    [40]
    LI J, BOLT T, BZDOK D, et al. Topography and behavioral relevance of the global signal in the human brain[J]. Scientific reports, 2019, 9(1): 14286. doi: 10.1038/s41598-019-50750-8
    [41]
    SCHOLVINCK M L, MAIER A, YE F Q, et al. Neural basis of global resting-state fMRI activity[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107: 10238-10243. doi: 10.1073/pnas.0913110107
    [42]
    SCHOLVINCK M L, SALEEM A B, BENUCCI A, et al. Cortical state determines global variability and correlations in visual cortex[J]. Journal of neuroscience, 2015, 35: 170-178. doi: 10.1523/JNEUROSCI.4994-13.2015
    [43]
    TURCHI J, CHANG C, YE F Q, et al. The basal forebrain regulates global resting-state fMRI fluctuations[J]. Neuron, 2018, 97: 940-952. doi: 10.1016/j.neuron.2018.01.032
    [44]
    WEN H, LIU Z. Broadband electrophysiological dynamics contribute to global resting-state fMRI signal[J]. Journal of neuroscience, 2016, 36: 6030-6040. doi: 10.1523/JNEUROSCI.0187-16.2016
    [45]
    LEOPOLD D A, MURAYAMA Y, LOGOTHETIS N K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging[J]. Cerebral cortex, 2003, 13(4): 422-433. doi: 10.1093/cercor/13.4.422
    [46]
    CHANG C, LEOPOLD D A, SCHÖLVINCK M L, et al. Tracking brain arousal fluctuations with fMRI[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(16): 4518-4523. doi: 10.1073/pnas.1520613113
    [47]
    YANG G J, MURRAY J D, GLASSER M, et al. Altered global signal topography in schizophrenia[J]. Cerebral cortex, 2017, 27: 5156-5169.
    [48]
    YANG G J, MURRAY J D, REPOVS G, et al. Altered global brain signal in schizophrenia[J]. Proceedings of the national academy of sciences of the United States of America, 2014, 111: 7438-7443. doi: 10.1073/pnas.1405289111
    [49]
    WANG X, LIAO W, HAN S, et al. Altered dynamic global signal topography in antipsychotic-naive adolescents with early-onset schizophrenia[J]. Schizophrenia research, 2019, 208: 308-316. doi: 10.1016/j.schres.2019.01.035
    [50]
    ARGYELAN M, GALLEGO J A, ROBINSON D G, et al. Abnormal resting state fMRI activity predicts processing speed deficits in first-episode psychosis[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2015, 40: 1631-1639. doi: 10.1038/npp.2015.7
    [51]
    ARGYELAN M, IKUTA T, DEROSSE P, et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder[J]. Schizophrenia bulletin, 2014, 40: 100-110. doi: 10.1093/schbul/sbt092
    [52]
    HAHAMY A, CALHOUN V, PEARLSON G, et al. Save the global: global signal connectivity as a tool for studying clinical populations with functional magnetic resonance imaging[J]. Brain connectivity, 2014, 4: 395-403. doi: 10.1089/brain.2014.0244
    [53]
    PARNAS J. The core gestalt of schizophrenia[J]. World psychiatry, 2012, 11: 67-69. doi: 10.1016/j.wpsyc.2012.05.002
    [54]
    NORTHOFF G, DUNCAN N W. How do abnormalities in the brain's spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology[J]. Progress in neurobiology, 2016, 145-146: 26-45. doi: 10.1016/j.pneurobio.2016.08.003
    [55]
    ZHANG J, MAGIONCALDA P, HUANG Z, et al. Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression[J]. Schizophrenia bulletin, 2019, 45: 902-910. doi: 10.1093/schbul/sby138
    [56]
    GOTTS S J, SIMMONS W K, MILBURY L A. Fractionation of social brain circuits in autism spectrum disorders[J]. Brain, 2012, 135: 2711-2725. doi: 10.1093/brain/aws160
    [57]
    ABBAS A, BASSIL YS. K. Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder[J]. Neuroimage: clinical, 2019, 21: 101653. doi: 10.1016/j.nicl.2019.101653
    [58]
    SCALABRINI A, VAI B, POLETTI S E A. All roads lead to the default-mode network-global source of dmn abnormalities in major depressive disorder[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2020, 45: 2058-2069. doi: 10.1038/s41386-020-0785-x
    [59]
    ABDALLAH C G, AVERILL C L, AL S R E. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment[J]. Biological psychiatry: cognitive neuroscience and neuroimaging, 2017, 2: 566-574. doi: 10.1016/j.bpsc.2017.04.006
    [60]
    SCHEINOST D, HOLMES S E, DELLAGIOIA N E A. Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder[J]. Neuropsychopharmacology : official publication of the American college of neuropsychopharmacology, 2018, 43: 1119-1127. doi: 10.1038/npp.2017.229
    [61]
    ZHANG L, WU H, XU J E A. Abnormal global functional connectivity patterns in medication-free major depressive disorder[J]. Frontiers in neuroscience, 2018, 12: 692. doi: 10.3389/fnins.2018.00692
    [62]
    MURROUGH J W, ABDALLAH C G, ANTICEVIC A E A. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder[J]. Human brain mapping, 2016, 37: 3214-3223. doi: 10.1002/hbm.23235
    [63]
    BUZSÁKI G. Rhythms of the Brain[M]. New York: Oxford University Press, 2006: 1-464.
    [64]
    HE B J, ZEMPEL J M, SNYDER A Z, et al. The temporal structures and functional significance of scale-free brain activity[J]. Neuron, 2010, 66: 353-369. doi: 10.1016/j.neuron.2010.04.020
    [65]
    HE B J. Scale-free brain activity: past, present, and future[J]. Trends in cognitive sciences, 2014, 18(9): 480-487. doi: 10.1016/j.tics.2014.04.003
    [66]
    HUANG Z, OBARA N, DAVIS H P J, et al. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness[J]. Neuropsychologia, 2016, 82: 161-170. doi: 10.1016/j.neuropsychologia.2016.01.025
    [67]
    LINKENKAER-HANSEN K, NIKOULINE V V, PALVA J M, et al. Long-range temporal correlations and scaling behavior in human brain oscillations[J]. Journal of neuroscience, 2001, 21: 1370-1377. doi: 10.1523/JNEUROSCI.21-04-01370.2001
    [68]
    NORTHOFF G, HUANG Z, How do the brain's time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC)[J]. Neuroscience and biobehavioral reviews, 2017, 80: 630-645. doi: 10.1016/j.neubiorev.2017.07.013
    [69]
    HASSON U, CHEN J, HONEY C J. Hierarchical process memory: memory as an integral component of information processing[J]. Trends in cognitive sciences, 2015, 19: 304-313. doi: 10.1016/j.tics.2015.04.006
    [70]
    NORTHOFF G. Personal identity and cortical midline structure (CMS): do temporal features of CMS neural activity transform into "self-continuity"?[J]. Psychological inquiry, 2017, 28: 122-131. doi: 10.1080/1047840X.2017.1337396
    [71]
    GOLESORKHI M, GOMEZ-PILAR J, TUMATI S, et al. Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization[J]. Communications biology, 2021, 4: 1-14. doi: 10.1038/s42003-020-01566-0
    [72]
    GOLESORKHI M G-P J, ZILIO F, BERBERIAN N, et al. The brain and its time: intrinsic neural timescales are key for input processing[J]. Communications biology, 2021, 16: 970.
    [73]
    WOLFF A, BERBERIAN N, GOLESORKHI M, et al. Intrinsic neural timescales: temporal integration and segregation[J]. Trends in cognitive sciences, 2022, 26(2): 159-173. doi: 10.1016/j.tics.2021.11.007
    [74]
    ITO T, HEARNE L J, COLE M W. A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales[J]. Neuroimage, 2020, 221: 117141. doi: 10.1016/j.neuroimage.2020.117141
    [75]
    RAUT R V, MITRA A, MAREK S, et al. Organization of propagated intrinsic brain activity in individual humans[J]. Cerebral cortex, 2020, 30: 1716-1734.
    [76]
    HUANG Z, ZHANG J, WU J, et al. Disrupted neural variability during propofol-induced sedation and unconsciousness[J]. Human brain mapping, 2018, 39: 4533-4544.
    [77]
    TAGLIAZUCCHI E, ROSEMAN L, KAELEN M, et al. Increased global functional connectivity correlates with LSD-induced ego dissolution[J]. Current biology, 2016, 26: 1043-1050.
    [78]
    TAGLIAZUCCHI E, VON WEGNER F, MORZELEWSKI A, et al. Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110: 15419-15424.
    [79]
    ZHANG J, HUANG Z, CHEN Y, et al. Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia[J]. Human brain mapping, 2018, 39: 2035-2046. doi: 10.1002/hbm.23984
    [80]
    ZILIO F, GOMEZ-PILAR J, CAO S, et al. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states[J]. Neuroimage, 2021, 226: 117579. doi: 10.1016/j.neuroimage.2020.117579
    [81]
    WOLFF A, DI GIOVANNI D A, G?MEZ-PILAR J, et al. The temporal signature of self: temporal measures of resting-state EEG predict self-consciousness. Human brain mapping[J]. 2019, 40(3): 789-803.
    [82]
    WATANABE T, REES G M N. Atypical intrinsic neural timescale in autism[J]. eLife, 2019, 8: e42256. doi: 10.7554/eLife.42256
    [83]
    DAMIANI S, SCALABRINI A, GOMEZ-PILAR J, et al. Increased scale-free dynamics in salience network in adult high-functioning autism[J]. Neuroimage: clinical, 2019, 21: 101634. doi: 10.1016/j.nicl.2018.101634
    [84]
    DAMIANI S, SCALABRINI A, KU H L, et al. From local to global and back: an exploratory study on cross-scale desynchronization in schizophrenia and its relation to thought disorders[J]. Schizophrenia research, 2021, 231: 10-12. doi: 10.1016/j.schres.2021.02.021
    [85]
    NORTHOFF G, SANDSTEN KE, NORDGAARD J E A. The self and its prolonged intrinsic neural timescale in schizophrenia[J]. Schizophrenia bulletin, 2021, 47: 170-179. doi: 10.1093/schbul/sbaa083
    [86]
    WENGLER K, GOLDBERG A T, CHAHINE G H G. Distinct hierarchical alterations of intrinsic neural timescales account for different manifestations of psychosis[J]. eLife, 2020, 9: e56151
    [87]
    USCĂTESCU LC, SAID-YÜREKLI S, KRONBICHLER L, et al. Reduced intrinsic neural timescales in schizophrenia along posterior parietal and occipital areas[J]. NPJ schizophrenia, 2021, 7(1): 55.
    [88]
    GUPTA A, WOLFF A, NORTHOFF D G. Extending the "resting state hypothesis of depression"——dynamics and topography of abnormal rest-task modulation[J]. Psychiatry research neuroimaging, 2021, 317: 111367.

Catalog

    Article views (380) PDF downloads (217) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return